Search results
Results from the WOW.Com Content Network
A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).
Hamming codes can be computed in linear algebra terms through matrices because Hamming codes are linear codes. For the purposes of Hamming codes, two Hamming matrices can be defined: the code generator matrix G and the parity-check matrix H:
In the extended binary Golay code, all code words have Hamming weights of 0, 8, 12, 16, or 24. Code words of weight 8 are called octads and code words of weight 12 are called dodecads. Octads of the code G 24 are elements of the S(5,8,24) Steiner system. There are 759 = 3 × 11 × 23 octads and 759 complements thereof.
A convolutional code that is terminated is also a 'block code' in that it encodes a block of input data, but the block size of a convolutional code is generally arbitrary, while block codes have a fixed size dictated by their algebraic characteristics. Types of termination for convolutional codes include "tail-biting" and "bit-flushing".
If C out and C in are linear block codes, then C out ∘C in is also a linear block code. This property can be easily shown based on the idea of defining a generator matrix for the concatenated code in terms of the generator matrices of C out and C in.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The block length of a block code is the number of symbols in a block. Hence, the elements c {\displaystyle c} of Σ n {\displaystyle \Sigma ^{n}} are strings of length n {\displaystyle n} and correspond to blocks that may be received by the receiver.
Because any polynomial that is a multiple of the generator polynomial is a valid BCH codeword, BCH encoding is merely the process of finding some polynomial that has the generator as a factor. The BCH code itself is not prescriptive about the meaning of the coefficients of the polynomial; conceptually, a BCH decoding algorithm's sole concern is ...