Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea-level density (about 1.2 kg/m 3 ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 ...
All of the Solar System's planets have atmospheres. This is because their gravity is strong enough to keep gaseous particles close to the surface. Larger gas giants are massive enough to keep large amounts of the light gases hydrogen and helium close by, while the smaller planets lose these gases into space . [ 6 ]
The mass of the oceans is approximately 1.35 × 10 18 metric tons or about 1/4400 of Earth's total mass. The oceans cover an area of 361.8 million km 2 (139.7 million sq mi) with a mean depth of 3,682 m (12,080 ft), resulting in an estimated volume of 1.332 billion km 3 (320 million cu mi).
This translates as the pressure decreasing exponentially with height. [5] In Earth's atmosphere, the pressure at sea level P 0 averages about 1.01 × 10 5 Pa, the mean molecular mass of dry air is 28.964 Da, and hence m = 28.964 Da × 1.660 × 10 −27 kg/Da = 4.808 × 10 −26 kg.
Monsoon air masses are moist and unstable. Superior air masses are dry, and rarely reach the ground. They normally reside over maritime tropical air masses, forming a warmer and drier layer over the more moderate moist air mass below, forming what is known as a trade wind inversion over the maritime tropical air mass.
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
In said atmospheric model, the atmospheric pressure, the weight of the mass of the gas, decreases at high altitude because of the diminishing mass of the gas above the point of barometric measurement. The units of air pressure are based upon the standard atmosphere (atm), which is 101,325 Pa (equivalent to 760 Torr or 14.696 psi).