enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.

  3. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...

  5. Computational problem - Wikipedia

    en.wikipedia.org/wiki/Computational_problem

    A decision problem is a computational problem where the answer for every instance is either yes or no. An example of a decision problem is primality testing: "Given a positive integer n, determine if n is prime." A decision problem is typically represented as the set of all instances for which the answer is yes. For example, primality testing ...

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Linear programming problems are the simplest convex programs. In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more ...

  7. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable in practice). Whenever we attempt to solve a new sub-problem, we first check the table to see ...

  8. Function problem - Wikipedia

    en.wikipedia.org/wiki/Function_problem

    This function problem is called the function variant of ; it belongs to the class FNP. FNP can be thought of as the function class analogue of NP, in that solutions of FNP problems can be efficiently (i.e., in polynomial time in terms of the length of the input) verified, but not necessarily efficiently found.

  9. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]