Search results
Results from the WOW.Com Content Network
Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.
From a spatial point of view, nearness (a.k.a. proximity) is considered a generalization of set intersection.For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in).
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
In the classic definition of the closeness centrality, the spread of information is modeled by the use of shortest paths. This model might not be the most realistic for all types of communication scenarios. Thus, related definitions have been discussed to measure closeness, like the random walk closeness centrality introduced by Noh and Rieger ...
Closeness may refer to: closeness (mathematics) closeness (graph theory), the shortest path between one vertex and another vertex;
Closeness centrality, the total geodesic distance from a given vertex to all other vertices, is the best known example. [7] Note that this classification is independent of the type of walk counted (i.e. walk, trail, path, geodesic). Borgatti and Everett propose that this typology provides insight into how best to compare centrality measures.
Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics.As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics.
Rather than characterize mathematics by deductive logic, intuitionism views mathematics as primarily about the construction of ideas in the mind: [9] The only possible foundation of mathematics must be sought in this construction under the obligation carefully to watch which constructions intuition allows and which not. [12] L. E. J. Brouwer 1907