enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimal radix choice - Wikipedia

    en.wikipedia.org/wiki/Optimal_radix_choice

    The cost of representing a number N in a given base b can be defined as (,) = ⌊ ⁡ + ⌋where we use the floor function ⌊ ⌋ and the base-b logarithm.. If both b and N are positive integers, then the quantity (,) is equal to the number of digits needed to express the number N in base b, multiplied by base b. [1]

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used.

  4. List of price index formulas - Wikipedia

    en.wikipedia.org/wiki/List_of_price_index_formulas

    [The formula does not make clear over what the summation is done. P C = 1 n ⋅ ∑ p t p 0 {\displaystyle P_{C}={\frac {1}{n}}\cdot \sum {\frac {p_{t}}{p_{0}}}} On 17 August 2012 the BBC Radio 4 program More or Less [ 3 ] noted that the Carli index, used in part in the British retail price index , has a built-in bias towards recording ...

  5. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    n > 0 is the number of letters in the alphabet (e.g., 26 in English) the falling factorial = (+) denotes the number of strings of length k that don't use any character twice. n! denotes the factorial of n; e = 2.718... is Euler's number; For n = 26, this comes out to 1096259850353149530222034277.

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k , for some integer k , and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k , which is n c where c = log 2 3.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and ...

  8. Complex-base system - Wikipedia

    en.wikipedia.org/wiki/Complex-base_system

    Of particular interest are the quater-imaginary base (base 2i) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign. Base −1 ± i , using digits 0 and 1 , was proposed by S. Khmelnik in 1964 [ 3 ] and Walter F. Penney in 1965.

  9. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    10 b = b for any base b, since 10 b = 1×b 1 + 0×b 0. For example, 10 2 = 2; 10 3 = 3; 10 16 = 16 10. Note that the last "16" is indicated to be in base 10. The base makes no difference for one-digit numerals. This concept can be demonstrated using a diagram. One object represents one unit.