enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).

  3. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    Johannes Droste in 1916 [11] independently produced the same solution as Schwarzschild, using a simpler, more direct derivation. [12] In the early years of general relativity there was a lot of confusion about the nature of the singularities found in the Schwarzschild and other solutions of the Einstein field equations. In Schwarzschild's ...

  4. Interior Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Interior_Schwarzschild_metric

    In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface.

  5. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    There are actually multiple possible ways to extend the exterior Schwarzschild solution into a maximally extended spacetime, but the Kruskal–Szekeres extension is unique in that it is a maximal, analytic, simply connected vacuum solution in which all maximally extended geodesics are either complete or else the curvature scalar diverges along ...

  6. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.

  7. images.huffingtonpost.com

    images.huffingtonpost.com/2012-08-30-3258_001.pdf

    Created Date: 8/30/2012 4:52:52 PM

  8. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922. It was not explicitly shown that these solutions were simply coordinate transformations of the usual Schwarzschild solution until 1933 in Lemaître's paper, [3] although Einstein immediately believed that to be true.

  9. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.