Search results
Results from the WOW.Com Content Network
Phylogenetic analyzes that use the gamma distribution to model rate variation estimate a single parameter from the data because they limit consideration to distributions where α = λ. This parameterization means that the mean of this distribution is 1 and the variance is 1/α. Maximum likelihood and Bayesian methods typically use a discrete ...
The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory. The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems; The inverse-gamma distribution; The generalized gamma distribution
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. [1]
Ex post facto recruitment methods are not considered true experiments, due to the limits of experimental control or randomized control that the experimenter has over the trait. This is because a control group may necessarily be selected from a discrete separate population. This research design is thus considered a quasi-experimental design.
In statistics, the Wishart distribution is a generalization of the gamma distribution to multiple dimensions. It is named in honor of John Wishart , who first formulated the distribution in 1928. [ 1 ]
Also known as the (Moran-)Gamma Process, [1] the gamma process is a random process studied in mathematics, statistics, probability theory, and stochastics. The gamma process is a stochastic or random process consisting of independently distributed gamma distributions where N ( t ) {\displaystyle N(t)} represents the number of event occurrences ...
The example here is of the Student's t-distribution, which is normally provided in R only in its standard form, with a single degrees of freedom parameter df. The versions below with _ls appended show how to generalize this to a generalized Student's t-distribution with an arbitrary location parameter m and scale parameter s .