Search results
Results from the WOW.Com Content Network
DFM guidelines define a set of rules for a person designing a product to ease the manufacturing process, reduce cost and time. For example, if a hole is to be drilled , if the designer specifies a standard hole size then it reduces the cost because the drill bits of unusual sizes are not readily available they have to be custom made.
Design for manufacturability (also sometimes known as design for manufacturing or DFM) is the general engineering practice of designing products in such a way that they are easy to manufacture. The concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology.
Depending on various types of manufacturing processes there are set guidelines for DFM practices. These DFM guidelines help to precisely define various tolerances, rules and common manufacturing checks related to DFM. Rule based guidelines which can be referred to while designing parts are mentioned below.
The thickness of the metal to be spun can vary from about 0.1 mm (0.004 in) to 120 mm (4 or 5 in) on special machines and with hot material. The most common thickness, however, are 0.6 to 1.3 mm (0.024 to 0.050 in). Maximum thickness and size are limited only by the size of the equipment and the power available to make the metal flow.
C V,am atom-mol −1 A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).
Rule based DFM analysis for forging is the controlled deformation of metal into a specific shape by compressive forces. The forging process goes back to 8000 B.C. and evolved from the manual art of simple blacksmithing. Then as now, a series of compressive hammer blows performs the shaping or forging of the part. Modern forging uses machine ...
However, support structures are explicitly required for most of the downward facing surfaces that make an angle less than 45 degrees with the powder bed. This is because powder bed alone is insufficient to hold the liquid phase of the metal that is created when laser is scanning the powder. Support structures are also required to restrict ...
DFM problem is then formulated as the designer fills in the MPGT template with this information and sends to the manufacturer, who fills in the remaining 'manufacturing relevant' information. With the completed formulation, the manufacturer is now able to solve the DFM problem, performing GT of the part design.