Search results
Results from the WOW.Com Content Network
In signal processing, Hermitian matrices are utilized in tasks like Fourier analysis and signal representation. [2] The eigenvalues and eigenvectors of Hermitian matrices play a crucial role in analyzing signals and extracting meaningful information. Hermitian matrices are extensively studied in linear algebra and numerical analysis.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
For a Hermitian matrix, the norm squared of the jth component of a normalized eigenvector can be calculated using only the matrix eigenvalues and the eigenvalues of the corresponding minor matrix, |, | = (()) (), where is the submatrix formed by removing the jth row and column from the original matrix.
The eigenvalues of a Hermitian matrix are real, since (λ − λ)v = (A * − A)v = (A − A)v = 0 for a non-zero eigenvector v. If A is real, there is an orthonormal basis for R n consisting of eigenvectors of A if and only if A is symmetric. It is possible for a real or complex matrix to have all real eigenvalues without being Hermitian.
Let be a matrix with .Its singular values are the positive eigenvalues of the (+) (+) Hermitian augmented matrix [].Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values. [1]
As with most eigenvalue algorithms for Hermitian matrices, divide-and-conquer begins with a reduction to tridiagonal form. For an matrix, the standard method for this, via Householder reflections, takes floating point operations, or if eigenvectors are needed as well.
Although this theorem requires that and be non-increasing, it is possible to reformulate this theorem without these assumptions.. We start with the assumption . The left hand side of the theorem's characterization (that is, "there exists a Hermitian matrix with these eigenvalues and diagonal elements") depends on the order of the desired diagonal elements , …, (because changing their order ...
Wolfgang Pauli (1900–1958), c. 1924. Pauli received the Nobel Prize in Physics in 1945, nominated by Albert Einstein, for the Pauli exclusion principle.. In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary.