enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HP-16C - Wikipedia

    en.wikipedia.org/wiki/HP-16C

    The HP-16C Computer Scientist is a programmable pocket calculator that was produced by Hewlett-Packard between 1982 and 1989. It was specifically designed for use by computer programmers, to assist in debugging.

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    SmartXML, a free programming language with integrated development environment (IDE) for mathematical calculations. Variables of BigNumber type can be used, or regular numbers can be converted to big numbers using conversion operator # (e.g., #2.3^2000.1). SmartXML big numbers can have up to 100,000,000 decimal digits and up to 100,000,000 whole ...

  4. Qalculate! - Wikipedia

    en.wikipedia.org/wiki/Qalculate!

    Qalculate! is an arbitrary precision cross-platform software calculator. [9] It supports complex mathematical operations and concepts such as derivation, integration, data plotting, and unit conversion. It is a free and open-source software released under GPL v2.

  5. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But even with the greatest common divisor divided out, arithmetic with rational numbers can become unwieldy very quickly: 1/99 − 1/100 = 1/9900, and if 1/101 is then added, the result is 10001/999900. The size of arbitrary-precision numbers is limited in practice by the total storage available, and computation time.

  7. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value. Digit sums and digital roots can be used for quick divisibility tests : a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively.

  8. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.

  9. Excess-3 - Wikipedia

    en.wikipedia.org/wiki/Excess-3

    The primary advantage of excess-3 coding over non-biased coding is that a decimal number can be nines' complemented [1] (for subtraction) as easily as a binary number can be ones' complemented: just by inverting all bits. [1] Also, when the sum of two excess-3 digits is greater than 9, the carry bit of a 4-bit adder will be set high.