Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. [ 1 ]
The Boltzmann distribution, a discrete distribution important in statistical physics which describes the probabilities of the various discrete energy levels of a system in thermal equilibrium. It has a continuous analogue. Special cases include: The Gibbs distribution; The Maxwell–Boltzmann distribution; The Borel distribution
G. Gamma distribution; Gamma/Gompertz distribution; Gaussian q-distribution; Generalised hyperbolic distribution; Generalized beta distribution; Generalized chi-squared distribution
An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal, uniform, chi-squared, and others.
In probability theory, statistics, and machine learning, the continuous Bernoulli distribution [1] [2] [3] is a family of continuous probability distributions parameterized by a single shape parameter (,), defined on the unit interval [,], by:
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...