Search results
Results from the WOW.Com Content Network
If contains an interior point of then every continuous positive linear form on has an extension to a continuous positive linear form on . Corollary : [ 1 ] Let X {\displaystyle X} be an ordered vector space with positive cone C , {\displaystyle C,} let M {\displaystyle M} be a vector subspace of E , {\displaystyle E,} and let f {\displaystyle f ...
Any positive linear functionals on dominated by is of the form = (), for some positive operator in () ′ with in the operator order. This is a version of the Radon–Nikodym theorem . For such g {\displaystyle g} , one can write f {\displaystyle f} as a sum of positive linear functionals: f = g + g ′ {\displaystyle f=g+g'} .
Download as PDF; Printable version; ... Pages in category "Linear functionals" ... Positive linear functional; R.
A proof can be sketched as follows: Let be the weak*-compact set of positive linear functionals on with norm ≤ 1, and () be the continuous functions on . A {\displaystyle A} can be viewed as a closed linear subspace of C ( Ω ) {\displaystyle C(\Omega )} (this is Kadison 's function representation ).
A weight ω on a von Neumann algebra is a linear map from the set of positive elements (those of the form a*a) to [0,∞]. A positive linear functional is a weight with ω(1) finite (or rather the extension of ω to the whole algebra by linearity). A state is a weight with ω(1) = 1. A trace is a weight with ω(aa*) = ω(a*a) for all a.
Download as PDF; Printable version; ... In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely ...
A linear function on a preordered vector space is called positive if it satisfies either of the following equivalent conditions: . implies (); if then () (). [1]; The set of all positive linear forms on a vector space with positive cone , called the dual cone and denoted by , is a cone equal to the polar of .
Conversely, by the Riesz–Markov–Kakutani representation theorem, each positive linear form on K (X) arises as integration with respect to a unique regular Borel measure. A real-valued Radon measure is defined to be any continuous linear form on K (X); they are precisely the differences of two