Search results
Results from the WOW.Com Content Network
The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers. For example, the number 144 in base 10 is a sum-product number, because 1 + 4 + 4 = 9 {\displaystyle 1+4+4=9} , 1 × 4 × 4 = 16 {\displaystyle 1\times 4\times 4=16} , and 9 × 16 = 144 {\displaystyle 9 ...
The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.
Sum of four cubes problem, whether every integer is a sum of four cubes; Euler's sum of powers conjecture § k = 3, relating to cubes that can be written as a sum of three positive cubes; Plato's number, an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3; Taxicab number, the smallest integer that can be expressed as a sum of ...
G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [22] the largest number now known not to be a sum of ...
T(n) is the sum of the first n triangular numbers, with T(0) = 0 (empty sum). A000292: Square pyramidal numbers: 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, ... n(n + 1)(2n + 1) / 6 : The number of stacked spheres in a pyramid with a square base. A000330: Cube numbers n 3: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ... n 3 = n × n × n ...
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
144 is a highly totient number. [3] 144 is the smallest number whose fifth power is a sum of four (smaller) fifth powers. This solution was found in 1966 by L. J. Lander and T. R. Parkin, and disproved Euler's sum of powers conjecture. It was famously published in a paper by both authors, whose body consisted of only two sentences: [4]
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as: + or . Cabtaxi(3), the smallest Cabtaxi number expressed in 3 different ways, is ...