Search results
Results from the WOW.Com Content Network
Glycerophospholipids are the main structural component of biological membranes. Their amphipathic nature drives the formation of the lipid bilayer structure of membranes. The cell membrane seen under the electron microscope consists of two identifiable layers, or "leaflets", each of which is made up of an ordered row of glycerophospholipid ...
The binding of agonists such as thrombin, epinephrine, or collagen, to platelet surface receptors can trigger the activation of phospholipase C to catalyze the release of arachidonic acid from two major membrane phospholipids, phosphatidylinositol and phosphatidylcholine.
Each cell membrane can have several kinds of membrane receptors, with varying surface distributions. A single receptor may also be differently distributed at different membrane positions, depending on the sort of membrane and cellular function. Receptors are often clustered on the membrane surface, rather than evenly distributed. [5] [6]
Phosphatidylserine (abbreviated Ptd-L-Ser or PS) is a phospholipid and is a component of the cell membrane. [1] It plays a key role in cell cycle signaling, specifically in relation to apoptosis. It is a key pathway for viruses to enter cells via apoptotic mimicry. [2] Its exposure on the outer surface of a membrane marks the cell for ...
Ion channels receptors are large transmembrane proteins with a ligand activated gate function. When these receptors are activated, they may allow or block passage of specific ions across the cell membrane. Most receptors activated by physical stimuli such as pressure or temperature belongs to this category. G-protein receptors are multimeric ...
These specific properties allow phospholipids to play an important role in the cell membrane. Their movement can be described by the fluid mosaic model , which describes the membrane as a mosaic of lipid molecules that act as a solvent for all the substances and proteins within it, so proteins and lipid molecules are then free to diffuse ...
It is a component of the cell plasma membrane that modulates cell signal transduction events, and appears to concentrate in lipid rafts. [2] [3] Recently, gangliosides have been found to be highly important molecules in immunology. Natural and semisynthetic gangliosides are considered possible therapeutics for neurodegenerative disorders. [4]
The synthesis of Phosphatidylinositol (PI) is limited to the Endoplasmatic Reticulum (ER), which is the largest membrane component of the cell. [23] This site also contributes the synthesis to the majority of phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and triacylglycerol (TG). [ 24 ]