enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. On-Line Encyclopedia of Integer Sequences - Wikipedia

    en.wikipedia.org/wiki/On-Line_Encyclopedia_of...

    In the case of the lazy caterer's sequence, the maximum number of pieces you can cut a pancake into with n cuts, the OEIS gives the sequence as 1, 2, 4, 7, 11, 16, 22, 29, 37, ... A000124, with offset 0, while Mathworld gives the sequence as 2, 4, 7, 11, 16, 22, 29, 37, ... (implied offset 1).

  3. Lazy caterer's sequence - Wikipedia

    en.wikipedia.org/wiki/Lazy_caterer's_sequence

    The maximum number of pieces from consecutive cuts are the numbers in the Lazy Caterer's Sequence. When a circle is cut n times to produce the maximum number of pieces, represented as p = f (n), the n th cut must be considered; the number of pieces before the last cut is f (n − 1), while the number of pieces added by the last cut is n.

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1) = 1. A000032: Prime numbers p n: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The prime numbers p ...

  5. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    This sequence of approximations begins ⁠ 1 / 1 ⁠, ⁠ 3 / 2 ⁠, ⁠ 7 / 5 ⁠, ⁠ 17 / 12 ⁠, and ⁠ 41 / 29 ⁠, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers ; these numbers form a second infinite ...

  6. Fortunate number - Wikipedia

    en.wikipedia.org/wiki/Fortunate_number

    For example, to find the seventh Fortunate number, one would first calculate the product of the first seven primes (2, 3, 5, 7, 11, 13 and 17), which is 510510. Adding 2 to that gives another even number, while adding 3 would give another multiple of 3. One would similarly rule out the integers up to 18.

  7. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    The known pattern to this sequence comes from algebraic number theory, specifically, this sequence is the set of primes p such that b is a primitive root modulo p. A conjecture of Emil Artin [ 1 ] is that this sequence contains 37.395..% of the primes (for b in OEIS : A085397 ).

  8. Padovan sequence - Wikipedia

    en.wikipedia.org/wiki/Padovan_sequence

    P(n) is the number of ways of writing n + 2 as an ordered sum in which each term is either 2 or 3 (i.e. the number of compositions of n + 2 in which each term is either 2 or 3). For example, P(6) = 4, and there are 4 ways to write 8 as an ordered sum of 2s and 3s: 2 + 2 + 2 + 2 ; 2 + 3 + 3 ; 3 + 2 + 3 ; 3 + 3 + 2

  9. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    The most-common visualization of the Recamán's sequence is simply plotting its values, such as the figure seen here. On January 14, 2018, the Numberphile YouTube channel published a video titled The Slightly Spooky Recamán Sequence , [ 3 ] showing a visualization using alternating semi-circles, as it is shown in the figure at top of this page.