Search results
Results from the WOW.Com Content Network
After passing through a communication channel, due to electronic noise or distortion added to the signal, the amplitude and phase received by the demodulator may differ from the correct value for the symbol. When plotted on a constellation diagram the point representing that received sample will be offset from the correct position for that symbol.
“The problem of communication was primarily viewed as a deterministic signal-reconstruction problem: how to transform a received signal, distorted by the physical medium, to reconstruct the original as accurately as possible” [2] or see original. [3] In 1948 electronics was advancing fast but the problem of receiving accurate data had not.
A "harmonious labeling" on a graph G is an injection from the vertices of G to the group of integers modulo k, where k is the number of edges of G, that induces a bijection between the edges of G and the numbers modulo k by taking the edge label for an edge (x, y) to be the sum of the labels of the two vertices x, y (mod k). A "harmonious graph ...
Linear Network Coding, a type of erasure correcting code across networks instead of point-to-point links; Long code; Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes; LT code, which is a near-optimal rateless erasure correcting code (Fountain code) m of n codes
Dijkstra's algorithm is commonly used on graphs where the edge weights are positive integers or real numbers. It can be generalized to any graph where the edge weights are partially ordered, provided the subsequent labels (a subsequent label is produced when traversing an edge) are monotonically non-decreasing. [10] [11]
Points with suffix P are in the Z plane and points with suffix Q are in the Y plane. Therefore, transformations P 1 to Q 1 and P 3 to Q 3 are from the Z Smith chart to the Y Smith chart and transformation Q 2 to P 2 is from the Y Smith chart to the Z Smith chart. The following table shows the steps taken to work through the remaining components ...
Shannon–Weaver model of communication [86] The Shannon–Weaver model is another early and influential model of communication. [10] [32] [87] It is a linear transmission model that was published in 1948 and describes communication as the interaction of five basic components: a source, a transmitter, a channel, a receiver, and a destination.
Communication diagrams show much of the same information as sequence diagrams, but because of how the information is presented, some of it is easier to find in one diagram than the other. Communication diagrams show which elements each one interacts with better, but sequence diagrams show the order in which the interactions take place more clearly.