Search results
Results from the WOW.Com Content Network
The Magnus effect is a phenomenon that occurs when a spinning object is moving through a fluid or gas (air). A lift force acts on the spinning object and its path may be deflected in a manner not present when it is not spinning. The strength and direction of the Magnus effect is dependent on the speed and direction of the rotation of the object ...
English: Magnus effect. While the pipe rotates, as a consequence of the friction, it pulls the air around. This makes the air flowing with higher speed on one side of the pipe than the speed on the other side of the pipe. This results with different dynamic pressures on two sides.
The Magnus effect will act as a destabilizing force on any bullet with a center of pressure located ahead of the center of gravity, while conversely acting as a stabilizing force on any bullet with the center of pressure located behind the center of gravity. The location of the center of pressure depends on the flow field structure, in other ...
The Magnus effect, depicted with a backspinning cylinder in an airstream. The arrow represents the resulting sideways force that can be used to help propel a ship. The curly flow lines represent a turbulent wake. The airflow is deflected in the direction of spin. A rotor or Flettner ship is designed to use the Magnus effect for propulsion. [3]
In sports like tennis or volleyball, the player can use the Magnus effect to control the ball's trajectory (e.g. via topspin or backspin) during flight. In golf, the effect is responsible for slicing and hooking which are usually a detriment to the golfer, but also helps with increasing the range of a drive and other shots.
The Buckau, the first vehicle to be propelled by a Flettner rotor. A Flettner rotor is a smooth cylinder with disc end plates which is spun along its long axis and, as air passes at right angles across it, the Magnus effect causes an aerodynamic force to be generated in the direction perpendicular to both the long axis and the direction of airflow. [1]
English: When a soccer ball is kicked with a counter-clockwise spin, low pressure occurs when the airflow is in the same direction as the spin on the ball and high pressure occurs when the airflow is in the opposite direction as the spin on the ball.
Given these inputs, the Mark 1 automatically computed the lead angles to the future position of the target at the end of the projectile's time of flight, adding in corrections for gravity, relative wind, the magnus effect of the spinning projectile, and parallax, the latter compensation necessary because the guns themselves were widely ...