Search results
Results from the WOW.Com Content Network
These bear his name, Bode gain plot and Bode phase plot. "Bode" is often pronounced as which is a Dutch pronunciation, closer to English / ˈ b oʊ d ə / BOH-d. [2] [3] Bode was faced with the problem of designing stable amplifiers with feedback for use in telephone networks.
The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [ 1 ] Dielectric spectroscopy (which falls in a subcategory of the impedance spectroscopy ) measures the dielectric properties of a medium as a function of frequency .
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
which has a pole at = and is not BIBO stable since the pole has a modulus strictly greater than one. Numerous tools exist for the analysis of the poles of a system. These include graphical systems like the root locus, Bode plots or the Nyquist plots. Mechanical changes can make equipment (and control systems) more stable.
As I understand the bode plot, is the transfer function as it is on the imaginary axis (s=jw). The question then is, why are poles or zeros on the real axis of the transfer function create corners and phase changes on the imaginary axis, at the same value of frequency as the pole or zero?
Bode diagram. Add languages. Add links ... Talk; English. Read; Edit; View history; Tools. Tools. move to sidebar hide. Actions ... Text is available under the ...
Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function .