enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Berry connection and curvature - Wikipedia

    en.wikipedia.org/wiki/Berry_connection_and_curvature

    An example of physical systems where an electron moves along a closed path is cyclotron motion (details are given in the page of Berry phase). Berry phase must be considered to obtain the correct quantization condition.

  3. Geometric phase - Wikipedia

    en.wikipedia.org/wiki/Geometric_phase

    There are several important aspects of this generalization of Berry's phase: 1) Instead of the parameter space for the original Berry phase, this Ning-Haken generalization is defined in phase space; 2) Instead of the adiabatic evolution in quantum mechanical system, the evolution of the system in phase space needs not to be adiabatic.

  4. Berry mechanism - Wikipedia

    en.wikipedia.org/wiki/Berry_mechanism

    Trigonal bipyramidal molecular shape ax = axial ligands (on unique axis) eq = equatorial ligand (in plane perpendicular to unique axis). The Berry mechanism, or Berry pseudorotation mechanism, is a type of vibration causing molecules of certain geometries to isomerize by exchanging the two axial ligands (see the figure) for two of the equatorial ones.

  5. Phase-field model - Wikipedia

    en.wikipedia.org/wiki/Phase-field_model

    Phase-field models are usually constructed in order to reproduce a given interfacial dynamics. For instance, in solidification problems the front dynamics is given by a diffusion equation for either concentration or temperature in the bulk and some boundary conditions at the interface (a local equilibrium condition and a conservation law), [14] which constitutes the sharp interface model.

  6. Prony's method - Wikipedia

    en.wikipedia.org/wiki/Prony's_method

    However, practical use of the method awaited the digital computer. [1] Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.

  7. Mehler kernel - Wikipedia

    en.wikipedia.org/wiki/Mehler_kernel

    The result of Mehler can also be linked to probability. For this, the variables should be rescaled as x → x/ √ 2, y → y/ √ 2, so as to change from the 'physicist's' Hermite polynomials H (.) (with weight function exp(− x 2)) to "probabilist's" Hermite polynomials He (.) (with weight function exp(− x 2 /2)).

  8. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  9. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to functions given by integration against a rapidly-varying complex exponential. This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin . [ 1 ]