Search results
Results from the WOW.Com Content Network
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
Convergent nozzles are used on many jet engines. If the nozzle pressure ratio is above the critical value (about 1.8:1) a convergent nozzle will choke, resulting in some of the expansion to atmospheric pressure taking place downstream of the throat (i.e., smallest flow area), in the jet wake. Although jet momentum still produces much of the ...
Figure 1: A Converging Nozzle. Consider a converging nozzle connecting a reservoir with a receiver. If the reservoir pressure is held constant and the receiver pressure reduced, the Mach number at the exit of the nozzle will increase until M e = 1 is reached, indicated by the left curve in figure 2.
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat). In this ...
The nozzle is usually convergent with a fixed flow area. Supersonic nozzle — For high nozzle pressure ratios (Nozzle Entry Pressure/Ambient Pressure) a convergent-divergent (de Laval) nozzle is used. The expansion to atmospheric pressure and supersonic gas velocity continues downstream of the throat and produces more thrust.
The rectangular convergent-divergent nozzle is fully variable for both the convergent throat and divergent areas for high nozzle pressure ratio and can vector ±20° in the pitch axis, greatly improving the aircraft's pitch authority by augmenting the pitching moment of the tail with engine thrust; this enables the F-22 to remain controllable ...