enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Held–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Held–Karp_algorithm

    The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...

  3. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    One of the earliest applications of dynamic programming is the Held–Karp algorithm, which solves the problem in time (). [24] This bound has also been reached by Exclusion-Inclusion in an attempt preceding the dynamic programming approach. Solution to a symmetric TSP with 7 cities using brute force search.

  4. Concorde TSP Solver - Wikipedia

    en.wikipedia.org/wiki/Concorde_TSP_Solver

    According to Mulder & Wunsch (2003), Concorde “is widely regarded as the fastest TSP solver, for large instances, currently in existence.” In 2001, Concorde won a 5000 guilder prize from CMG for solving a vehicle routing problem the company had posed in 1996. [7] Concorde requires a linear programming solver and only supports QSopt [8] and ...

  5. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    Dynamic programming breaks a multi-period planning problem into simpler steps at different points in time. Therefore, it requires keeping track of how the decision situation is evolving over time. The information about the current situation that is needed to make a correct decision is called the "state".

  6. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.

  7. Dynamic problem (algorithms) - Wikipedia

    en.wikipedia.org/wiki/Dynamic_problem_(algorithms)

    Problems in this class have the following measures of complexity: Space – the amount of memory space required to store the data structure; Initialization time – time required for the initial construction of the data structure; Insertion time – time required for the update of the data structure when one more input element is added;

  8. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.

  9. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    [1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...