Search results
Results from the WOW.Com Content Network
Single-cell DNA genome sequencing involves isolating a single cell, amplifying the whole genome or region of interest, constructing sequencing libraries, and then applying next-generation DNA sequencing (for example Illumina, Ion Torrent). Single-cell DNA sequencing has been widely applied in mammalian systems to study normal physiology and ...
The DNA sequencing is done on a chip that contains many ZMWs. Inside each ZMW, a single active DNA polymerase with a single molecule of single stranded DNA template is immobilized to the bottom through which light can penetrate and create a visualization chamber that allows monitoring of the activity of the DNA polymerase at a single molecule level.
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
As a result of the aforementioned properties of single-cell transcriptomic data, batch correction methods developed for bulk sequencing data were observed to perform poorly. Consequently, researchers developed statistical methods to correct for batch effects that are robust to the properties of single-cell transcriptomic data to integrate data ...
Single-cell DNA template strand sequencing, or Strand-seq, is a technique for the selective sequencing of a daughter cell's parental template strands. [1] This technique offers a wide variety of applications, including the identification of sister chromatid exchanges in the parental cell prior to segregation, the assessment of non-random segregation of sister chromatids, the identification of ...
The sequencing methods applied by these sequencers do not require DNA amplification (polymerase chain reaction – PCR), which speeds up the sample preparation before sequencing and reduces errors. In addition, sequencing data is collected from the reactions caused by the addition of nucleotides in the complementary strand in real time.
In single cell Hi-C, after ligation, single cells are isolated and the remaining steps are performed in separate compartments, [13] [15] and hybrid DNA is tagged with a compartment specific barcode. High-throughput sequencing is then performed on the pool of the hybrid DNA from the single cells.
G&T-seq (short for single cell genome and transcriptome sequencing) is a novel form of single cell sequencing technique allowing one to simultaneously obtain both transcriptomic and genomic data from single cells, allowing for direct comparison of gene expression data to its corresponding genomic data in the same cell...