Search results
Results from the WOW.Com Content Network
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
If a surface has constant Gaussian curvature, it is called a surface of constant curvature. [52] The unit sphere in E 3 has constant Gaussian curvature +1. The Euclidean plane and the cylinder both have constant Gaussian curvature 0. A unit pseudosphere has constant Gaussian curvature -1 (apart from its equator, that is singular).
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = using angular coordinates θ, φ ∈ [0, 2π), representing rotation around the tube and rotation around the torus's axis of revolution, respectively, where the major radius R is the distance from the center of the tube to ...
The graph of a continuous function of two variables, defined over a connected open subset of R 2 is a topological surface. If the function is differentiable, the graph is a differentiable surface. A plane is both an algebraic surface and a differentiable surface. It is also a ruled surface and a surface of revolution.
The relation remains valid for a geodesic on an arbitrary surface of revolution. A statement of the general version of Clairaut's relation is: [1] Let γ be a geodesic on a surface of revolution S, let ρ be the distance of a point of S from the axis of rotation, and let ψ be the angle between γ and the meridian of S. Then ρ sin ψ is ...
If the function to be revolved is a function of x, the following integral represents the volume of the solid of revolution: π ∫ a b R ( x ) 2 d x {\displaystyle \pi \int _{a}^{b}R(x)^{2}\,dx} where R ( x ) is the distance between the function and the axis of rotation.
The simplest type of parametric surfaces is given by the graphs of functions of two variables: = (,), (,) = (,, (,)). A rational surface is a surface that admits parameterizations by a rational function. A rational surface is an algebraic surface. Given an algebraic surface, it is commonly easier to decide if it is rational than to compute its ...