Search results
Results from the WOW.Com Content Network
The resonance hybrid, which is the actual structure, is an average of the resonance forms and better reflects the equal bond lengths and delocalized electrons. In diagrams, resonance structures are represented by double-headed arrows, while the resonance hybrid is often depicted with a circle inside the benzene ring, indicating delocalized ...
In the first place, Clar's rule is formulated only for species with hexagonal rings, [12] and thus it cannot be applied to species having rings different from the benzene moiety, even though an extension of the rule to molecules with rings of any dimension has been provided by Glidewell and Lloyd. [12]
The inductive and resonance properties compete with each other but the resonance effect dominates for purposes of directing the sites of reactivity. For nitration, for example, fluorine directs strongly to the para position because the ortho position is inductively deactivated (86% para, 13% ortho, 0.6% meta).
Linking benzene rings gives biphenyl, C 6 H 5 –C 6 H 5. Further loss of hydrogen gives "fused" aromatic hydrocarbons, such as naphthalene, anthracene, phenanthrene, and pyrene. The limit of the fusion process is the hydrogen-free allotrope of carbon, graphite. In heterocycles, carbon atoms
Two different resonance forms of benzene (top) combine to produce an average structure (bottom). In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected from conjugation alone.
In organic chemistry, the phenyl group, or phenyl ring, is a cyclic group of atoms with the formula C6H5, and is often represented by the symbol Ph (archaically φ) or Ø. The phenyl group is closely related to benzene and can be viewed as a benzene ring, minus a hydrogen, which may be replaced by some other element or compound to serve as a ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Kekulé structure of benzene with alternating double bonds. Kekulé's most famous work was on the structure of benzene. [3] In 1865 Kekulé published a paper in French (for he was then still in Belgium) suggesting that the structure contained a six-membered ring of carbon atoms with alternating single and double bonds. [11]