Search results
Results from the WOW.Com Content Network
In statistics, Bartlett's test, named after Maurice Stevenson Bartlett, [1] is used to test homoscedasticity, that is, if multiple samples are from populations with equal variances. [2] Some statistical tests, such as the analysis of variance , assume that variances are equal across groups or samples, which can be checked with Bartlett's test.
The Cochran's Q test is an extension of the McNemar's test for more than two "treatments". The Liddell's exact test is an exact alternative to McNemar's test. [10] [11] The Stuart–Maxwell test is different generalization of the McNemar test, used for testing marginal homogeneity in a square table with more than two rows/columns. [12] [13] [14]
Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter.
The null hypothesis of this chi-squared test is homoscedasticity, and the alternative hypothesis would indicate heteroscedasticity. Since the Breusch–Pagan test is sensitive to departures from normality or small sample sizes, the Koenker–Bassett or 'generalized Breusch–Pagan' test is commonly used instead.
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.
Annual number of test takers: NCLEX-RN: 358,998 (in 2023) [1] NCLEX-PN: 65,679 (in 2023) [1] Prerequisites: Candidate must be a graduate of an approved nursing school. Fluency in English assumed. Fee: $200 USD or $360 CAD: Used by: State Boards of Nursing in United States and Board of Nursing in 10 Canadian provinces: Qualification rate: NCLEX ...
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom. Let γ 2 , α = 1 − α {\displaystyle \gamma _{2,\alpha }={1-\alpha }} be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two ...
The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.