enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resonance - Wikipedia

    en.wikipedia.org/wiki/Resonance

    Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator. [1] [2]Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its resonant frequency, defined as the frequency that generates the maximum amplitude response in the system.

  3. Mechanical resonance - Wikipedia

    en.wikipedia.org/wiki/Mechanical_resonance

    Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in ...

  4. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  5. Electrical resonance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resonance

    Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

  6. Crystal oscillator frequencies - Wikipedia

    en.wikipedia.org/wiki/Crystal_oscillator_frequencies

    Crystal oscillators can be manufactured for oscillation over a wide range of frequencies, from a few kilohertz up to several hundred megahertz.Many applications call for a crystal oscillator frequency conveniently related to some other desired frequency, so hundreds of standard crystal frequencies are made in large quantities and stocked by electronics distributors.

  7. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.

  8. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  9. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    For a particular driving frequency called the resonance, or resonant frequency =, the amplitude (for a given ) is maximal. This resonance effect only occurs when < /, i.e. for significantly underdamped systems. For strongly underdamped systems the value of the amplitude can become quite large near the resonant frequency.