enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  3. Reference atmospheric model - Wikipedia

    en.wikipedia.org/wiki/Reference_atmospheric_model

    The gas which comprises an atmosphere is usually assumed to be an ideal gas, which is to say: = Where ρ is mass density, M is average molecular weight, P is pressure, T is temperature, and R is the ideal gas constant. The gas is held in place by so-called "hydrostatic" forces. That is to say, for a particular layer of gas at some altitude: the ...

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.

  5. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In gas dynamics we are interested in the local relations between pressure, density and temperature, rather than considering a fixed quantity of gas. By considering the density ρ = M / V {\displaystyle \rho =M/V} as the inverse of the volume for a unit mass, we can take ρ = 1 / V {\displaystyle \rho =1/V} in these relations.

  6. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  7. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The equation modifies the ideal gas law in two ways: first, it considers particles to have a finite diameter (whereas an ideal gas consists of point particles); second, its particles interact with each other (unlike an ideal gas, whose particles move as though alone in the volume).

  8. Equation of state - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state

    If the calorically perfect gas approximation is used, then the ideal gas law may also be expressed as follows = where is the number density of the gas (number of atoms/molecules per unit volume), = / is the (constant) adiabatic index (ratio of specific heats), = is the internal energy per unit mass (the "specific internal energy"), is the ...

  9. Flow conditions - Wikipedia

    en.wikipedia.org/wiki/Flow_conditions

    The density of a gas is calculated using the ideal gas law and an equation of state calculation such as the one described in AGA Report No. 8. Liquid density [ edit ]