Search results
Results from the WOW.Com Content Network
Electron configuration 5f 3 6d 1 7s 2: Electrons per shell: 2, 8, 18, 32, 21, 9, 2: Physical properties; ... Uranium is a chemical element with the symbol U and ...
In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...
As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule. However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 , written as [Ar] 3d 4 4s 2 , but whose actual configuration given ...
Spectral lines of uranium: Other properties; ... electron configuration = | electron configuration ref = | electron configuration comment = | electrons per shell = ...
For example, in uranium 92 U, according to the Madelung rule, the 5f subshell (n + l = 5 + 3 = 8) is occupied before the 6d subshell (n + l = 6 + 2 = 8). The rule then predicts the electron configuration [Rn] 5f 4 7s 2 where [Rn] denotes the configuration of radon, the preceding noble gas.
Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2
Technetium-99 (99 Tc) is a major product of the fission of uranium-235 (235 U), making it the most common and most readily available isotope of technetium. One gram of technetium-99 produces 6.2 × 10 8 disintegrations per second (in other words, the specific activity of 99 Tc is 0.62 G Bq /g).
The electron configuration for the tripositive ion Np 3+ is [Rn] 5f 4, with the outermost 7s and 6d electrons lost first: this is exactly analogous to neptunium's lanthanide homolog promethium, and conforms to the trend set by the other actinides with their [Rn] 5f n electron configurations in the tripositive state.