Search results
Results from the WOW.Com Content Network
The simplest half-adder design, pictured on the right, incorporates an XOR gate for and an AND gate for . The Boolean logic for the sum (in this case S {\displaystyle S} ) will be A ⊕ B {\displaystyle A\oplus B} whereas for the carry ( C {\displaystyle C} ) will be A ⋅ B {\displaystyle A\cdot B} .
A majority gate is a logical gate used in circuit complexity and other applications of Boolean circuits. A majority gate returns true if and only if more than 50% of its inputs are true. For instance, in a full adder, the carry output is found by applying a majority function to the three inputs, although frequently this part of the adder is ...
A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates.. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.
A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.
An and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network.An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation.
Boolean circuits are defined in terms of the logic gates they contain. For example, a circuit might contain binary AND and OR gates and unary NOT gates, or be entirely described by binary NAND gates. Each gate corresponds to some Boolean function that takes a fixed number of bits as input and outputs a single bit.
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.
Figure 1: Logic diagram for a half subtractor. The half subtractors can be designed through the combinational Boolean logic circuits [2] as shown in Figure 1 and 2. The half subtractor is a combinational circuit which is used to perform subtraction of two bits.