enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...

  3. Wing configuration - Wikipedia

    en.wikipedia.org/wiki/Wing_configuration

    Wing configuration. The Spitfire wing may be classified as: "a conventional low-wing cantilever monoplane with unswept elliptical wings of moderate aspect ratio and slight dihedral". The wing configuration of a fixed-wing aircraft (including both gliders and powered aeroplanes) is its arrangement of lifting and related surfaces.

  4. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)

  5. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    Wing loading is a useful measure of the stalling speed of an aircraft. Wings generate lift owing to the motion of air around the wing. Larger wings move more air, so an aircraft with a large wing area relative to its mass (i.e., low wing loading) will have a lower stalling speed.

  6. Wingtip vortices - Wikipedia

    en.wikipedia.org/wiki/Wingtip_vortices

    As a consequence, aircraft for which a high lift-to-drag ratio is desirable, such as gliders or long-range airliners, typically have high aspect ratio wings. Such wings however have disadvantages with respect to structural constraints and maneuverability, as evidenced by combat and aerobatic planes which usually feature short, stubby wings ...

  7. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    However, since wingspan can be increased while decreasing aspect ratio, or vice versa, the apparent relationship between aspect ratio and induced drag does not always hold. [ 2 ] [ 9 ] : 489 For a typical twin-engine wide-body aircraft at cruise speed, induced drag is the second-largest component of total drag, accounting for approximately 37% ...

  8. Subsonic aircraft - Wikipedia

    en.wikipedia.org/wiki/Subsonic_aircraft

    A subsonic aircraft is an aircraft with a maximum speed less than the speed of sound (Mach 1). The term technically describes an aircraft that flies below its critical Mach number, typically around Mach 0.8. All current civil aircraft, including airliners, helicopters, future passenger drones, personal air vehicles and airships, as well as many ...

  9. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    The Oswald efficiency is defined for the cases where the overall coefficient of drag of the wing or airplane has a constant+quadratic dependence on the aircraft lift coefficient. where. For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85 ...