Search results
Results from the WOW.Com Content Network
The carrying capacity is defined as the environment 's maximal load, [clarification needed] which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births (as well as immigration and emigration). Carrying capacity of the environment implies that the resources ...
Wildlife management is the management process influencing interactions among and between wildlife, its habitats and people to achieve predefined impacts. [1][2][3] It attempts to balance the needs of wildlife with the needs of people using the best available science. Wildlife management can include wildlife conservation, population control ...
An example of direct competition. Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. [1] By contrast, interspecific competition occurs when ...
In a population, carrying capacity is known as the maximum population size of the species that the environment can sustain, which is determined by resources available. In many classic population models, r is represented as the intrinsic growth rate, where K is the carrying capacity, and N0 is the initial population size. [5]
Mutualism is an interaction between two or more species, where species derive a mutual benefit, for example an increased carrying capacity. Similar interactions within a species are known as co-operation. Mutualism may be classified in terms of the closeness of association, the closest being symbiosis, which is often confused with mutualism.
v. t. e. Ecology (from Ancient Greek οἶκος (oîkos) 'house' and -λογία (-logía) 'study of') [A] is the natural science of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels.
This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...
The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of ...