enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    Additive inverse. In mathematics, the additive inverse of an element x, denoted -x, [1] is the element that when added to x, yields the additive identity, 0. [2] In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the ...

  3. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The axioms of modules imply that (−1)x = −x, where the first minus denotes the additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.

  4. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    In algebra, a unit or invertible element[a] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. [1][2] The set of units ...

  5. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    Abelian group. In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian ...

  6. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.

  7. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    An example is the additive group of the rational numbers: every finite set of rational numbers is a set of integer multiples of a single unit fraction, the inverse of their lowest common denominator, and generates as a subgroup a cyclic group of integer multiples

  8. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The quaternion is called the vector part (sometimes imaginary part) of q, and a is the scalar part (sometimes real part) of q. A quaternion that equals its real part (that is, its vector part is zero) is called a scalar or real quaternion, and is identified with the corresponding real number.

  9. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    For example, addition is a total associative operation on nonnegative integers, which has 0 as additive identity, and 0 is the only element that has an additive inverse. This lack of inverses is the main motivation for extending the natural numbers into the integers.