Search results
Results from the WOW.Com Content Network
The radii of the three given circles are known, as is the distance d non from the common concentric center to the non-concentric circle (Figure 7). The solution circle can be determined from its radius r s, the angle θ, and the distances d s and d T from its center to the common concentric center and the center of the non-concentric circle ...
Inversive geometry. In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.
The Fréchet distance between two concentric circles of radius and respectively is | |. The longest leash is required when the owner stands still and the dog travels to the opposite side of the circle ( r 1 + r 2 {\displaystyle r_{1}+r_{2}} ), and the shortest leash when both owner and dog walk at a constant angular velocity around the circle ...
Archimedean spiral. Three 360° loops of one arm of an Archimedean spiral. The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below ...
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is ...
The circle is the closed curve of least perimeter that encloses the maximum area. This is known as the isoperimetric inequality, which states that if a rectifiable Jordan curve in the Euclidean plane has perimeter C and encloses an area A (by the Jordan curve theorem) then.
In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated packing density, η, of an arrangement is the proportion of the surface covered by the circles.
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid 's Elements.