Search results
Results from the WOW.Com Content Network
The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distances between a set of points in the Euclidean plane. In this case, the embedded metric S is a finite metric space, whose distances are shortest path lengths in a graph, and the metric T into which S is embedded is the ...
In physics, attempts have been made to explain stretched exponential behaviour as a linear superposition of simple exponential decays. This requires a nontrivial distribution of relaxation times, ρ(u), which is implicitly defined by = /.
If the frequency ratios of octaves are greater than a factor of 2, the tuning is stretched; if smaller than a factor of 2, it is compressed." [3] Melodic stretch refers to tunings with fundamentals stretched relative to each other, while harmonic stretch refers to tunings with harmonics stretched relative to fundamentals which are not stretched ...
Stretch factor – Mathematical parameter of embeddings Subcontraction map – Function reducing distance between all points Pages displaying short descriptions of redirect targets References
Greedy geometric spanner of 100 random points with stretch factor t = 2 Greedy geometric spanner of the same points with stretch factor t = 1.1. In computational geometry, a greedy geometric spanner is an undirected graph whose distances approximate the Euclidean distances among a finite set of points in a Euclidean space.
A stretch in the xy-plane is a linear transformation which enlarges all distances in a particular direction by a constant factor but does not affect distances in the perpendicular direction. We only consider stretches along the x-axis and y-axis. A stretch along the x-axis has the form x' = kx; y' = y for some positive constant k.
For example, the graph of y = A sin(x) + B cos(x) can be obtained from the graph of y = sin(x) by translating it through an angle α along the positive X axis (where tan(α) = A ⁄ B), then stretching it parallel to the Y axis using a stretch factor R, where R 2 = A 2 + B 2.
In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]