Search results
Results from the WOW.Com Content Network
In stereochemistry, prochiral molecules are those that can be converted from achiral to chiral in a single step. [1] [2] An achiral species which can be converted to a chiral in two steps is called proprochiral. [2] If two identical substituents are attached to an sp 3-hybridized atom, the descriptors pro-R and pro-S are used to distinguish ...
The achiral groups contain also transformations of determinant −1. In an achiral group, the orientation-preserving transformations form a (chiral) subgroup of index 2. Finite Coxeter groups or reflection groups are those point groups that are generated purely by a set of reflectional mirrors passing through the same point.
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Jim Leighton has developed chiral allysilicon compounds in which the release of ring strain facilitated the stereoselective allylation reaction, 95% to 98% enantiomeric excess could be achieved for a range of achiral aldehydes. [34] Fig. 2: Example of chiral allylmetals used: (a) allylboron, (b) allyltitanium, and (c) allyl silicon
are arranged around the chiral center carbon atom. With the hydrogen atom away from the viewer, if the arrangement of the CO→R→N groups around the carbon atom as center is counter-clockwise, then it is the L form. [14] If the arrangement is clockwise, it is the D form. As usual, if the molecule itself is oriented differently, for example ...
Chiral inversion is the process of conversion of one enantiomer of a chiral molecule to its mirror-image version with no other change in the molecule. [1] [2] [3] [4]Chiral inversion happens depending on various factors (viz. biological-, solvent-, light-, temperature- induced, etc.) and the energy barrier energy barrier associated with the stereogenic element present in the chiral molecule. 2 ...
Instead, both effects can also occur when the propagation direction of the electromagnetic wave together with the structure of an (achiral) material form a chiral experimental arrangement. [10] [11] This case, where the mutual arrangement of achiral components forms a chiral (experimental) arrangement, is known as extrinsic chirality. [12] [13]
The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All nontrivial torus knots are chiral. The Alexander polynomial cannot distinguish a knot from its mirror image, but the Jones polynomial can in some cases; if V k ( q ) ≠ V k ( q −1 ), then the knot is chiral, however the converse is not true.