Search results
Results from the WOW.Com Content Network
This ongoing current in both directions is called the exchange current density. When the potential is set more negative than the formal potential, the cathodic current is greater than the anodic current. Written as a reduction, cathodic current is positive. The net current density is the difference between the cathodic and anodic current density.
Tafel plot for an anodic process (). The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. [1] The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification.
The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium). The lower graph shows the logarithmic plot for different values of α (Tafel plot).
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
In the case of the cathodic partial current density being equal to the anodic partial current density (for example, in a corrosion process [3]), the net current density on the electrode is zero: [2] i eq = i c,eq + i a,eq = 0. When more than one reaction occur on an electrode simultaneously, then the total electrode current can be expressed as: [1]
That is, the current is said to be "diffusion controlled". The Cottrell equation describes the case for an electrode that is planar but can also be derived for spherical, cylindrical, and rectangular geometries by using the corresponding Laplace operator and boundary conditions in conjunction with Fick's second law of diffusion .
Faraday discovered that when the same amount of electric current is passed through different electrolytes connected in series, the masses of the substances deposited or liberated at the electrodes are directly proportional to their respective chemical equivalent/equivalent weight (E). [3]
In electrochemistry, the Randles–Ševčík equation describes the effect of scan rate on the peak current (i p) for a cyclic voltammetry experiment. For simple redox events where the reaction is electrochemically reversible, and the products and reactants are both soluble, such as the ferrocene/ferrocenium couple, i p depends not only on the concentration and diffusional properties of the ...