enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to apply techniques requiring the symmetry is to turn the original directed graph into an undirected ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix, or (increasingly) of the graph's Laplacian matrix due to its discrete Laplace operator, which is either (sometimes called the combinatorial Laplacian) or / / (sometimes called the normalized Laplacian), where is a diagonal matrix with ...

  4. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The famous Cheeger's inequality from Riemannian geometry has a discrete analogue involving the Laplacian matrix; this is perhaps the most important theorem in spectral graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.

  5. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.

  6. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplacian in differential geometry. The discrete Laplace operator is a finite-difference analog of the continuous Laplacian, defined on graphs and grids. The Laplacian is a common operator in image processing and computer vision (see the Laplacian of Gaussian, blob detector, and scale space).

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number ...

  9. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.