enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deoxyribonuclease I - Wikipedia

    en.wikipedia.org/wiki/Deoxyribonuclease_I

    Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.

  3. Deoxyribonuclease - Wikipedia

    en.wikipedia.org/wiki/Deoxyribonuclease

    The first set of DNases is DNase I.This family consisted of DNase I, DNase1L1, DNase 1L2, and DNase1L3.DNase I cleaves DNA to form two oligonucleotide-end products with 5’-phospho and 3’-hydroxy ends and is produced mainly by organs of the digestive system.

  4. Deoxyribonucleotide - Wikipedia

    en.wikipedia.org/wiki/Deoxyribonucleotide

    The third component, the phosphoryl group, attaches to the deoxyribose monomer via the hydroxyl group on the 5'-carbon of the sugar. When deoxyribonucleotides polymerize to form DNA, the phosphate group from one nucleotide will bond to the 3' carbon on another nucleotide, forming a phosphodiester bond via dehydration synthesis. New nucleotides ...

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Deoxyribonucleic acid (/ d iː ˈ ɒ k s ɪ ˌ r aɪ b oʊ nj uː ˌ k l iː ɪ k,-ˌ k l eɪ-/ ⓘ; [1] DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many ...

  6. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...

  7. Directionality (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Directionality_(molecular...

    The 3′-hydroxyl is necessary in the synthesis of new nucleic acid molecules as it is ligated (joined) to the 5′-phosphate of a separate nucleotide, allowing the formation of strands of linked nucleotides. Molecular biologists can use nucleotides that lack a 3′-hydroxyl (dideoxyribonucleotides) to interrupt the replication of DNA.

  8. 25-Hydroxyvitamin D 1-alpha-hydroxylase - Wikipedia

    en.wikipedia.org/wiki/25-Hydroxyvitamin_D_1...

    25-Hydroxyvitamin D 1-alpha-hydroxylase (VD 1A hydroxylase) also known as calcidiol 1-monooxygenase [5] or cytochrome p450 27B1 (CYP27B1) or simply 1-alpha-hydroxylase is a cytochrome P450 enzyme that in humans is encoded by the CYP27B1 gene. [6] [7] [8]

  9. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...