Search results
Results from the WOW.Com Content Network
The central cylindrical projection is a perspective cylindrical map projection. It corresponds to projecting the Earth's surface onto a cylinder tangent to the equator as if from a light source at Earth's center. The cylinder is then cut along one of the projected meridians and unrolled into a flat map. [1]
Cylindrical Equal-area Johann Heinrich Lambert: Cylindrical equal-area projection with standard parallel at the equator and an aspect ratio of π (3.14). 1910 Behrmann: Cylindrical Equal-area Walter Behrmann: Cylindrical equal-area projection with standard parallels at 30°N/S and an aspect ratio of (3/4)π ≈ 2.356. 2002 Hobo–Dyer ...
How the Earth is projected onto a cylinder. The projection: is cylindrical, that means it has a cylindrical projection surface [2] is normal, that means it has a normal aspect; is an equal-area projection, that means any two areas in the map have the same relative size compared to their size on the sphere.
Projected area is the two dimensional area measurement of a three-dimensional object by projecting its shape on to an arbitrary plane. This is often used in mechanical engineering and architectural engineering related fields, especially for hardness testing, axial stress , wind pressures, and terminal velocity .
The definitions and results in this section are taken from the 1913 text Plane and Solid Geometry by George A. Wentworth and David Eugene Smith (Wentworth & Smith 1913).. A cylindrical surface is a surface consisting of all the points on all the lines which are parallel to a given line and which pass through a fixed plane curve in a plane not parallel to the given line.
In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map ...
Lambert's projection is the basis for the cylindrical equal-area projection family. Lambert chose the equator as the parallel of no distortion. [2] By multiplying the projection's height by some factor and dividing the width by the same factor, the regions of no distortion can be moved to any desired pair of parallels north and south of the ...
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),