Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
An example of a double helix in molecular biology is the nucleic acid double helix. An example of a conic helix is the Corkscrew roller coaster at Cedar Point amusement park. Some curves found in nature consist of multiple helices of different handedness joined together by transitions known as tendril perversions .
A conical or volute spring (including the spring used to hold and make contact with the negative terminals of AA or AAA batteries in a battery box), and the vortex that is created when water is draining in a sink is often described as a spiral, or as a conical helix.
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line.
An example. In mathematics, a conchospiral a specific type of space spiral on the surface of a cone (a conical spiral), whose floor projection is a logarithmic spiral. Conchospirals are used in biology for modelling snail shells, and flight paths of insects [1] [2] and in electrical engineering for the construction of antennas. [3] [4]
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.
Its name derives from its similarity to the helix: for every point on the helicoid, there is a helix contained in the helicoid which passes through that point. The helicoid is also a ruled surface (and a right conoid), meaning that it is a trace of a line. Alternatively, for any point on the surface, there is a line on the surface passing ...