Search results
Results from the WOW.Com Content Network
the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1) th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α i for some natural number i.
The multiplicative group of integers modulo n, which is the group of units in this ring, ... By the fundamental theorem of finite abelian groups, the group ...
The map sending a finite-dimensional F-vector space to its dimension induces an isomorphism for any field F. Next, =, the multiplicative group of F. [1] The second K-group of a field is described in terms of generators and relations by Matsumoto's theorem.
The multiplicative inverse for an element a of a finite field can be calculated a number of different ways: By multiplying a by every number in the field until the product is one. This is a brute-force search. Since the nonzero elements of GF(p n) form a finite group with respect to multiplication, a p n −1 = 1 (for a ≠ 0), thus the inverse ...
The group of units, R ×, can be decomposed as a direct product G 1 ×G 2, as follows. The subgroup G 1 is the group of (p r – 1)-th roots of unity. It is a cyclic group of order p r – 1. The subgroup G 2 is 1+pR, consisting of all elements congruent to 1 modulo p. It is a group of order p r(n−1), with the following structure:
The group multiplication is not abelian. The group was studied by number theorists as the group of wild automorphisms of the local field F p ((t)) and by group theorists including D. Johnson (1988) and the name "Nottingham group" refers to his former domicile. This group is a finitely generated pro-p-group, of finite width. For every finite ...