Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Inclusion–exclusion illustrated by a Venn diagram for three sets. Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets: Include the cardinalities of the sets. Exclude the cardinalities of the pairwise intersections.
English: Venn diagram picturing relationships between elements within self-determination theory of student motivation. As per this is the uploader's own work as the diagram has been developed from the referenced source to to illustrate the three important elements discussed in the article. This image should be corrected to read "based on ...
A Venn diagram, in contrast, is a graphical representation of n sets in which the n loops divide the plane into 2 n zones such that for each way of selecting some of the n sets (possibly all or none), there is a zone for the elements that belong to all the selected sets and none of the others. For example, if the sets are A, B, and C, there ...
In this case, if the choice of U is clear from the context, the notation A c is sometimes used instead of U \ A, particularly if U is a universal set as in the study of Venn diagrams. Symmetric difference of sets A and B, denoted A B or A ⊖ B, is the set of all objects that are a member of exactly one of A and B (elements which are in one of ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Venn diagram of = . The symmetric difference is equivalent to the union of both relative complements, that is: [1] = (), The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation:
For example, Cantor's verbatim definition allows for considerable freedom in what constitutes a set. On the other hand, it is unlikely that Cantor was particularly interested in sets containing cats and dogs, but rather only in sets containing purely mathematical objects. An example of such a class of sets could be the von Neumann universe. But ...