Search results
Results from the WOW.Com Content Network
The data from a study can also be analyzed to consider secondary hypotheses inspired by the initial results, or to suggest new studies. A secondary analysis of the data from a planned study uses tools from data analysis, and the process of doing this is mathematical statistics. Data analysis is divided into:
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear operators acting upon these spaces and respecting these structures in a suitable sense.
Annals of the Institute of Statistical Mathematics; Annals of Statistics; AStA Wirtschafts- und Sozialstatistisches Archiv; Biometrika; The Canadian Journal of Statistics; Communications in Statistics; International Statistical Review; Journal of the American Statistical Association; Journal of Multivariate Analysis; Journal of the Royal ...
In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology.Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging.
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
It supports many binary instrument data formats and has its own vectorized programming language. IGOR Pro, a software package with emphasis on time series, image analysis, and curve fitting. It comes with its own programming language and can be used interactively. LabPlot is a data analysis and visualization application built on the KDE Platform.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...