Search results
Results from the WOW.Com Content Network
From the invention of tanks through to the Second World War, tank armour increased in thickness to resist the increasing size and power of anti-tank guns.A tank with sufficient armour could resist the largest anti-tank guns then in use.
Therefore, toughness of titanium alloy is decreased. Multiple vacuum arc melting (VAR) technique can be used to minimize the oxygen content and increase the toughness of the alloy. Similarly, phosphorus in steels can decrease toughness dramatically. Phosphorus can segregate on grain boundary and lead to intergranular fracture. [6]
Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. [2]
Advanced Modular Armor Protection (AMAP) is modular composite armour concept, developed by the German company IBD Deisenroth Engineering, since 2019 part of Rheinmetall Protection Systems. According to IBD AMAP is a 4th generation composite armour, making use of nano-ceramics and modern steel alloy technologies. [ 1 ]
Abrasion resistant steel undergoes a two-step heat treatment process called quenching and tempering, which alters the steel's grain structure to increase hardness and toughness. [ 2 ] During the quenching phase, the steel is heated to an above-critical temperature and is then rapidly cooled with water.
Titanium alloys are heat treated for a number of reasons, the main ones being to increase strength by solution treatment and aging as well as to optimize special properties, such as fracture toughness, fatigue strength and high temperature creep strength. Alpha and near-alpha alloys cannot be dramatically changed by heat treatment.
The toughness of a material is the maximum amount of energy it can absorb before fracturing, which is different from the amount of force that can be applied. Toughness tends to be small for brittle materials, because elastic and plastic deformations allow materials to absorb large amounts of energy. Hardness increases with decreasing particle size.
In other words, it is the movement of dislocations in the material which allows for deformation. If we want to enhance a material's mechanical properties (i.e. increase the yield and tensile strength), we simply need to introduce a mechanism which prohibits the mobility of these dislocations. Whatever the mechanism may be, (work hardening ...