Search results
Results from the WOW.Com Content Network
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
The parameters in the above equation are: controls the amount of damping,; controls the linear stiffness,; controls the amount of non-linearity in the restoring force; if =, the Duffing equation describes a damped and driven simple harmonic oscillator,
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in
Plot of the Duffing map showing chaotic behavior, where a = 2.75 and b = 0.15. Phase portrait of a two-well Duffing oscillator (a differential equation, rather than a map) showing chaotic behavior. The Duffing map (also called as 'Holmes map') is a discrete-time dynamical system. It is an example of a dynamical system that exhibits chaotic behavior
Phase portrait showing saddle-node bifurcation. Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations.
The phase portrait of the pendulum equation x ″ + sin x = 0.The highlighted curve shows the heteroclinic orbit from (x, x′) = (–π, 0) to (x, x′) = (π, 0).This orbit corresponds with the (rigid) pendulum starting upright, making one revolution through its lowest position, and ending upright again.