Search results
Results from the WOW.Com Content Network
Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.
The Poisson–Boltzmann equation describes a model proposed independently by Louis Georges Gouy and David Leonard Chapman in 1910 and 1913, respectively. [3] In the Gouy-Chapman model, a charged solid comes into contact with an ionic solution, creating a layer of surface charges and counter-ions or double layer. [4]
Without loss of generality, we will take λ to be non-negative. When λ is zero , the equation reduces to Poisson's equation . Therefore, when λ is very small, the solution approaches that of the unscreened Poisson equation, which, in dimension n = 3 {\displaystyle n=3} , is a superposition of 1/ r functions weighted by the source function f :
If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT: If X is a Poisson random variable with large mean, then for integers j and k, P(j ≤ X ≤ k) approximately equals to P(j − 1/2 ≤ Y ≤ k + 1/2) where Y is a normal ...
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this
This is true when the negative Fourier coefficients of f all vanish. In particular, the Poisson kernel is commonly used to demonstrate the equivalence of the Hardy spaces on the unit disk, and the unit circle. The space of functions that are the limits on T of functions in H p (z) may be called H p (T).
The uniqueness theorem for Poisson's equation states that, for a large class of boundary conditions, the equation may have many solutions, but the gradient of every solution is the same. In the case of electrostatics , this means that there is a unique electric field derived from a potential function satisfying Poisson's equation under the ...
In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator . The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own ...