Ad
related to: solubility criteria chartpdffiller.com has been visited by 1M+ users in the past month
A tool that fits easily into your workflow - CIOReview
- Edit PDF Documents Online
Upload & Edit any PDF File Online.
No Installation Needed. Try Now!
- Online Document Editor
Upload & Edit any PDF Form Online.
No Installation Needed. Try Now!
- Type Text in PDF Online
Upload & Type on PDF Files Online.
No Installation Needed. Try Now!
- Write Text in PDF Online
Upload & Write on PDF Forms Online.
No Installation Needed. Try Now!
- Edit PDF Documents Online
Search results
Results from the WOW.Com Content Network
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Class III – low permeability, high solubility . Example: cimetidine; The absorption is limited by the permeation rate but the drug is solvated very fast. If the formulation does not change the permeability or gastro-intestinal duration time, then class I criteria can be applied. Class IV – low permeability, low solubility . Example: bifonazole
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
For substitutional solid solutions, the Hume-Rothery rules are as follows: The atomic radius of the solute and solvent atoms must differ by no more than 15%: [1] % = % %. The crystal structures of solute and solvent must be similar.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
(However, PE only dissolves at temperatures well above 100 °C.) Poly(styrene) has a solubility parameter of 9.1 cal 1/2 cm −3/2, and thus ethyl acetate is likely to be a good solvent. Nylon 6,6 has a solubility parameter of 13.7 cal 1/2 cm −3/2, and ethanol is likely to be the best solvent of those tabulated. However, the latter is polar ...