Search results
Results from the WOW.Com Content Network
Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...
Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]
c is the molar concentration of those species; ℓ is the path length. Different disciplines have different conventions as to whether absorbance is decadic (10-based) or Napierian (e-based), i.e., defined with respect to the transmission via common logarithm (log 10) or a natural logarithm (ln). The molar absorption coefficient is usually decadic.
Determining the absolute concentration of a compound requires knowledge of the compound's absorption coefficient. The absorption coefficient for some compounds is available from reference sources, and it can also be determined by measuring the spectrum of a calibration standard with a known concentration of the target.
Variable pathlength absorption spectroscopy uses a determined slope to calculate concentration. As stated above this is a product of the molar absorptivity and the concentration. Since the actual absorbance value is taken at many data points at equal intervals, background subtraction is generally unnecessary.
This absorbance value can then be used to determine the concentration of a given element (or atoms) within the sample. The relationship between the concentration of atoms, the distance the light travels through the collection of atoms, and the portion of the light absorbed is given by the Beer–Lambert law.
The ratio of the absorbance at 260 and 280 nm (A 260/280) is used to assess the purity of nucleic acids. For pure DNA, A 260/280 is widely considered ~1.8 but has been argued to translate - due to numeric errors in the original Warburg paper - into a mix of 60% protein and 40% DNA. [ 6 ]
By definition, internal transmittance is related to optical depth and to absorbance as = =, where τ is the optical depth; A is the absorbance. The Beer–Lambert law states that, for N attenuating species in the material sample,