Search results
Results from the WOW.Com Content Network
The conversion of methylcyclohexane to toluene is a classic aromatization reaction. This platinum (Pt)-catalyzed process is practiced on scale in the production of gasoline from petroleum. [13] It is also one of a host of substances in jet fuel surrogate blends, e.g., for Jet A fuel. [14] [15]
The process, which is catalyzed by platinum supported by aluminium oxide, is exemplified in the conversion methylcyclohexane (a naphthene) into toluene (an aromatic). [2] Dehydrocyclization converts paraffins (acyclic hydrocarbons) into aromatics. [3] A related aromatization process includes dehydroisomerization of methylcyclopentane to benzene:
Catalytic reforming is a chemical process used to convert naphthas from crude oil into liquid products called reformates, which are premium "blending stocks" for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes , which are then partially ...
Therefore, to reduce torsional strain, cyclohexane adopts a three-dimensional structure known as the chair conformation, which rapidly interconvert at room temperature via a process known as a chair flip. During the chair flip, there are three other intermediate conformations that are encountered: the half-chair, which is the most unstable ...
It has been patented for use in air fresheners. [8]U.S. Patent 4915825 describes a froth flotation process for cleaning coal where a mixture of 95% MCHM, 4% water, and 0.1% 4-methylcyclohexanemethanol monoether (such as 4-(methoxymethyl)cyclohexanemethanol) is used as a frothing agent, and finely divided coal particles adhere to air bubbles induced into the agent which rise to the surface.
The production of p-xylene is industrially significant, with annual demand estimated at 37 million tons in 2014, and still on the increase. [12] [13] p-Xylene is produced by catalytic reforming of petroleum naphtha as part of the BTX aromatics (benzene, toluene and the xylene isomers) extracted from the catalytic reformate.
Examples of biosynthetic pathways include those for the production of amino acids, lipid membrane components, and nucleotides, but also for the production of all classes of biological macromolecules, and of acetyl-coenzyme A, adenosine triphosphate, nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed ...
The commercial production of amino acids usually relies on mutant bacteria that overproduce individual amino acids using glucose as a carbon source. Some amino acids are produced by enzymatic conversions of synthetic intermediates. 2-Aminothiazoline-4-carboxylic acid is an intermediate in the industrial synthesis of L-cysteine for example.