enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    The joint probability density function, (,) for two continuous random variables is defined as the derivative of the joint cumulative distribution function (see Eq.1 ...

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the transition matrix of jump one to the power of t, that is

  5. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If () is a general scalar-valued function of a normal vector, its probability density function, cumulative distribution function, and inverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code). [17]

  6. Complex random variable - Wikipedia

    en.wikipedia.org/wiki/Complex_random_variable

    The probability density function of a complex random variable is defined as () = (), ((), ()), i.e. the value of the density function at a point is defined to be equal to the value of the joint density of the real and imaginary parts of the random variable evaluated at the point ((), ()).

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    In measure-theoretic probability theory, the density function is defined as the Radon–Nikodym derivative of the probability distribution relative to a common dominating measure. [5] The likelihood function is this density interpreted as a function of the parameter, rather than the random variable. [6]

  8. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    Given a known joint distribution of two discrete random variables, say, X and Y, the marginal distribution of either variable – X for example – is the probability distribution of X when the values of Y are not taken into consideration. This can be calculated by summing the joint probability distribution over all values of Y.

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.